# Week 7 - Dynamic Programming

### Matrix-chain multiplication

Given a chain of $n$ matrices $\langle A_1, ..., A_i, ..., A_n \rangle$ , where $A_i$ has dimension $p_{i-1} \times p_i$, parenthesize it in a way that minimizes the number of scalar multiplications.

#### Optimal structure

Within optimal parentheses, two splitted sub-chains must be optimal as well.

Prove: alternative 'better' sub-chains will yield a solution 'better' than the optimum: a contradiction.

#### Recursively defining

1. Definition: for $1 \leq i \leq j$, let $m[i, j]$ be optimal solution to chain $[i, j]$

2. The optimal solution is made of optimal solutions of sub-chains

• When the problem is trivial: $i = j$, single matrix, $m[i, j] = m[i, i] = 0$
• When the problem is not trivial: $i < j$, let $A_{i...k}$ and $A_{k+1...j}$ be the optimal parentheses, the cost will be sum of two sub-product plus product of two sub-matrix, which is
m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j
3. All possible splitting must be considered to yield optimal solutions of sub-chains, so we review all $i \leq k < j$ and find the optimal (minimum here):

\min_{i \leq k < j} \{m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j\}

In conclusion, we recursively define the minimum cost of parenthesizing product as

\begin{align*} m[i, j] = \begin{cases} 0 &\text{if }i = j\\\\ \min_{i \leq k < j} \{m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j\} &\text{if }i < j\end{cases} \end{align*}

It's trivial.

#### Computing Optimal

Running time $O(n^3)$

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 class ch15: """Algorithms in chapter 15 """ def matrix_up_np(self, p): """matrix-chain product Given a chain of n matrices, where A_i has dimension p_{i-1} \times p_i, fully parenthesize in a way that minimizes the number of scalar multiplications. Arguments: p {list} -- list of matrix shape consecutively memo {dict} -- dict of memoization """ import numpy as np n = len(p) - 1 m = np.zeros((n+1, n+1)) # m -> optimal number s = np.zeros((n+1, n+1)) # s -> optimal k for i in range(1, n+1): m[i, i] = 0 for l in range(2, n+1): # l -> chain length for i in range(1, n-l+2): # head position j = i + l - 1 # tail position m[i, j] = float('inf') for k in range(i, j): q = m[i, k] + m[k + 1, j] + p[i - 1]*p[k]*p[j] if q < m[i, j]: m[i, j] = q s[i, j] = k print(m[1:, 1:]) # start from 1 print(s[1:, 1:]) return m, s def matrix_print(self, s, i, j): """print parentheses Arguments: s {np.array} -- chart of 'k' i {int} -- from j {int} -- to """ i, j = int(i), int(j) if i == j: print('A_'+str(i), end=' ') else: print('(', end='') # print(i, j) self.matrix_print(s, i, s[i, j]) self.matrix_print(s, s[i, j] + 1, j) print(')', end='') >>> quiz = ch15() >>> p = [30, 35, 15, 5, 10, 20, 25] # same to the textbook sample >>> _, s = quiz.matrix_up_np(p) [[ 0. 15750. 7875. 9375. 11875. 15125.] [ 0. 0. 2625. 4375. 7125. 10500.] [ 0. 0. 0. 750. 2500. 5375.] [ 0. 0. 0. 0. 1000. 3500.] [ 0. 0. 0. 0. 0. 5000.] [ 0. 0. 0. 0. 0. 0.]] [[0. 1. 1. 3. 3. 3.] [0. 0. 2. 3. 3. 3.] [0. 0. 0. 3. 3. 3.] [0. 0. 0. 0. 4. 5.] [0. 0. 0. 0. 0. 5.] [0. 0. 0. 0. 0. 0.]] >>> quiz.matrix_print(s, 1, 6) ((A_1 (A_2 A_3 ))((A_4 A_5 )A_6 )) 

### Longest common subsequence

#### Recursively Defining

\begin{align*} z[i, j] = \begin{cases} 0 &\text{ if }i = 0 \text{ or }j = 0\\\\ z[i-1, j-1] + 1 &\text{ if }X_i = Y_j\\\\ \max(z(i-1, j), z(i, j-1)) &\text{ if }X_i != Y_j\end{cases} \end{align*}

### Optimal Binary Search Tree

\begin{align} E &= \sum_{i=1}^n (\text{depth}_T(k_i) + 1)\times p_i + \sum_{i=0}^n (\text{depth}_T(d_i) + 1)\times q_i \\ &= 1 + \sum_{i=1}^n \text{depth}_T(k_i)\times p_i + \sum_{i=0}^n \text{depth}_T(d_i)\times q_i \end{align}

#### Optimal Structure

If an optimal BST has a subtree, the latter must be optimal as well.

Prove: If not, replace the subtree with the optimal one, results in a 'better than optimal' BST: contradiction to optimality.

#### Recursively Defining

1. Definition

• $e[i, j]$ is cost optimal BST containing keys $\langle k_i, \dots, k_j\rangle$ and dummy keys $\langle d_{i-1}, \dots, d_j\rangle$.
2. Push down cost: $e[i, j]$ is the cost when we access the tree directly. When it becomes a subtree of a node, the original subtree is pushed down one level. This increases the cost of each node by 1 level, and the sum of which will be

w(i, j) = \sum_{r=i}^j p_r + \sum_{l=i-1}^j q_r

Note that if $key_r$ if the root, then

w(i, j) = w(i, r-1) + p_r + w(r+1, j)
3. Thus, if there exist a root, we choose $k_r, i \leq r \leq j$ as the root

• The cost of root node is $p_r$
• The cost of $left$ subtree = direct access cost + push down 1 level
• The cost of $right$ subtree = direct access cost + push down 1 level
\begin{align} e[i, j] &= \text{cost of root node} + \text{cost of left subtree} + \text{cost of right subtree} \\ &= p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))\\ &= e[i, r-1] + e[r+1, j] + (w(i, r-1) +p_r + w(r+1, j))\\ &= e[i, r-1] + e[r+1, j] + w(i, j) \end{align}
4. In order to find the optimal (minimum) cost above, we shall consider all possible root:

e[i, j] = \min_{i\leq r\leq j} \{e[i, r-1] + e[r+1, j] + w(i, j)\}
5. The trivial case is there's no root but only dummy key, which happens when $j = i-1$, and the cost of which is the dummy key itself $q_{i-1}$.

6. Combine the trivial case with none trivial ones, we have:

\begin{align} e[i, j] =\begin{cases} q_{i-1} &\text{ if }j = i - 1 \\\\ \min_{i\leq r\leq j} \{e[i, r-1] + e[r+1, j] + w(i, j)\} &\text{ if }i\leq j \\ \end{cases} \end{align}

## Assignment - Due 11/10/2018

Credit: source code of questions are from walkccc.

### 15.1-2

Show, by means of a counterexample, that the following ''greedy'' strategy does not always determine an optimal way to cut rods. Define the density of a rod of length $i$ to be $p_i / i$, that is, its value per inch. The greedy strategy for a rod of length $n$ cuts off a first piece of length $i$, where $1 \le i \le n$, having maximum density. It then continues by applying the greedy strategy to the remaining piece of length $n - i$.

\begin{array}{l|ccccc} i & 1 & 2 & 3 & 4 & 5 \\ \hline p_i & 1 & 10 & 12 & 8 & 10 \\ p_i/i & 1 & 5 & 4 & 2 & 2 \\ \end{array}

Given the price table above, suppose ord length is 3, according to $p_i/i$ greedy strategy, it will be cut to $\{2, 1\}$ with income of $11$. However the optimal way is without cutting, having income of $12$.

### 15.1-3

Consider a modification of the rod-cutting problem in which, in addition to a price $p_i$ for each rod, each cut incurs a fixed cost of $c$. The revenue associated with a solution is now the sum of the prices of the pieces minus the costs of making the cuts. Give a dynamic-programming algorithm to solve this modified problem.

#### Top-down method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 def rod_dynamic_down(price={1:1, 2:5, 3:8, 4:9, 5:10, 6:17, 7:17, 8:30}, avail=21, pool={}, c=0): """Get maximum value of rod to the avail, top-down implementation Keyword Arguments: price {dict} -- dict of length and price {length:price, } avail {int} -- [description] (default: {21}) """ price_len = sorted(price.keys()) if avail < min(price_len): # less than min-cutting return 0 if pool.get(avail): # dynamic - found return pool.get(avail) max_r = 0 # in case rod <= avail for rod in [i for i in price_len if i <= avail]: max_r = max(max_r, price[rod] + rod_dynamic_down(price, avail-rod, pool) - c) pool[avail] = max_r # dynamic - not found return max_r 

#### Bottom-up method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 def rod_dynamic_up(price={1:1, 2:5, 3:8, 4:9, 5:10, 6:17, 7:17, 8:30}, avail=21, c=0): """Bottom-up Keyword Arguments: price {dict} -- dict of length and price {length:price, } avail {int} -- [description] (default: {100}) """ record = {0:0, } for total in range(1, avail+1): max_r = 0 for cut in range(1, min(total, max(price)) + 1): max_r = max(max_r, price[cut] + record[total - cut] - c) record[total] = max_r return max_r 

### 15.2-1

Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is $\langle 5, 10, 3, 12, 5, 50, 6 \rangle$.

### 15.2-3

Use the substitution method to show that the solution to the recurrence $\text{(15.6)}$ is $\Omega(2^n)$.

### 15.4-1

Determine an $\text{LCS}$ of $\langle 1, 0, 0, 1, 0, 1, 0, 1 \rangle$ and $\langle 0, 1, 0, 1, 1, 0, 1, 1, 0 \rangle$.

### 15.4-2

Give pseudocode to reconstruct an $\text{LCS}$ from the completed $c$ table and the original sequences $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ in $O(m + n)$ time, without using the $b$ table.

### 15.4-3

Give a memoized version of $\text{LCS-LENGTH}$ that runs in $O(mn)$ time.

### 15.4-4

Show how to compute the length of an $\text{LCS}$ using only $2 \cdot \min(m, n)$ entries in the $c$ table plus $O(1)$ additional space. Then show how to do the same thing, but using $\min(m, n)$ entries plus $O(1)$ additional space.

### 15.5-1

Write pseudocode for the procedure $\text{CONSTRUCT-OPTIMAL-BST}(root)$ which, given the table $root$, outputs the structure of an optimal binary search tree. For the example in Figure 15.10, your procedure should print out the structure

\begin{align} & \text{$k_2$ is the root} \\ & \text{$k_1$ is the left child of $k_2$} \\ & \text{$d_0$ is the left child of $k_1$} \\ & \text{$d_1$ is the right child of $k_1$} \\ & \text{$k_5$ is the right child of $k_2$} \\ & \text{$k_4$ is the left child of $k_5$} \\ & \text{$k_3$ is the left child of $k_4$} \\ & \text{$d_2$ is the left child of $k_3$} \\ & \text{$d_3$ is the right child of $k_3$} \\ & \text{$d_4$ is the right child of $k_4$} \\ & \text{$d_5$ is the right child of $k_5$} \end{align}

corresponding to the optimal binary search tree shown in Figure 15.9(b).

### 15.5-2

Determine the cost and structure of an optimal binary search tree for a set of $n = 7$ keys with the following probabilities

\begin{array}{c|cccccccc} i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline p_i & & 0.04 & 0.06 & 0.08 & 0.02 & 0.10 & 0.12 & 0.14 \\ q_i & 0.06 & 0.06 & 0.06 & 0.06 & 0.05 & 0.05 & 0.05 & 0.05 \end{array}